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1 Data preparations and descriptive statistics

1.1 Description of the data set

Today we will use data from a sleep deprivation study. The following variables are included:

• ID = participant ID

• age = age group (1 = young, 2 = old)

• education = education group (1 = comprehensive school, 2 = secondary, 3 = higher)

• ht_group = hormone treatment (user, control)

• digitsymbol = digit symbol test score at times 1, 2 and 3

• bentonerror = Benton test error score at times 1, 2 and 3

This study investigated the e�ects of sleep deprivation on two di�erent tests: digit-symbol test

(from WAIS-III) and Benton Visual Retention Test. Test scores were collected on three consecutive

days always in the morning: after normal sleep, after sleep deprivation, and after normal sleep

again. Some participants receive hormone treatment (HT) (coded as 'users'), some do not (coded

as 'controls').

1.2 Load and prepare your data

Load the data from http://becs.aalto.fi/~heikkih3/deprivation.csv into a data frame

deprivation.

Prepare the data as usual - check that factors are factors, and look for missing values and check

how they are coded. Useful functions: summary, head, boxplot. (Refer to Demo 1 for help.)
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1.3 Describe your data

Show descriptive statistics for your numeric variables in a table. Useful functions: summary, describe.

Plot test scores for Digit symbol and Benton tasks in all di�erent time points. At this point, you

can simply take box plots separately for each time point. Remember to adjust scales so that the

scores are comparable (tip: named argument ylim= included in your boxplot function).

Finally, attach the deprivation data using attach.

(Refer to Demo 2 for help.)

2 Primer: distributions

Next, we will run a few simulations to demonstrate how di�erent distributions look like. Do not

worry too much about the commands we use to make simulations, the important thing is to focus

on the behaviour and characteristics of di�erent distributions.

2.1 Normal distribution

The great thing about normal distribution is that we know so much about it. We can make

inferences regarding the position of di�erent values along the distribution. For instance, we know

how far from mean 95% of observations lie. This helps us to infer which phenomena are rare and

which are not. This is essential in statistics: usually our goal is to decide whether we are con�dent

enough to accept or reject our hypothesis, and this decision is based on distributions.

Many things in nature are normally distributed, including for instance height and psychological

constructs such as IQ (which by de�nition is normally distributed). However, normal distribution

is also useful in cases where the actual values do not follow a normal distribution. This is due to

the central limit theorem which states that if you take repeated samples from a population and

calculate their averages, then these averages will be normally distributed.

To demonstrate this, simulate �ve uniformly distributed random numbers between 0 and 10 and

work out the average. Let's do this 10 000 times and look at the distribution of the 10 000 means.

Distribution of the raw data is �at-topped:

> hist(runif(10000)*10, main="")

What about the distribution of sample means, based on taking just �ve uniformly distributed

random numbers?

> means <- numeric(10000)

> for (i in 1:10000) {
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means[i] <- mean(runif(5)*10)

}

> hist(means, ylim=c(0,1600))

Let's add a normal curve:

> h <- hist(means, freq=F, ylim=c(0,0.35))

> x <- seq(min(h$breaks),max(h$breaks), by=0.1)

> y <- dnorm(x, mean=mean(means), sd=sd(means))

> lines(x,y,col="red", lty="dashed", lwd=3)

The �t is excellent - the central limit theorem works.

2.2 Student's t-distribution

Student's t-distribution is used instead of the normal distribution when sample sizes are small

(n < 30). Compared to the normal distribution, Student's t-distribution has �atter tails. The

t-distribution depends on one parameter: the sample size.

In sample sizes close to 30 and higher, Student's t-distribution is close to normal distribution.

Let's demonstrate this.

# create a vector

> simu <- seq(-4,4,0.01)

# draw a normal distribution:

> plot(simu, dnorm(simu), type="l", lty=2, ylab="Probability density", xlab="Deviates")

# add different t-distributions:

> lines(simu, dt(simu, df=5), col="red") # sample size = 5

> lines(simu, dt(simu, df=10), col="green") # sample size = 10

# ETC. play around by increasing sample size.

# What happens when you get close or beyond 30?

In Section 4, we will see how t-distribution relates to statistical testing of hypotheses.

2.3 F-distribution

Another important distribution is the F-distribution. It is especially relevant for ANOVA, since

the ratio between two quotients follows F-distribution. F-distribution depends on two parameters,

which are the degrees of freedom (DF) from the two quotients we are dividing. We can demonstrate

the behaviour of F-distribution:
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# create a vector

> simu2 <- seq(0,4,0.01)

# draw an F-distribution

> plot(simu2, df(simu2,1,1), type="l", lty=2, ylab="Probability density", xlab="Deviates")

# try changing degrees of freedom:

> lines(simu2, df(simu2, 1,10), col="red") # DF 1 = 1, DF = 10

> lines(simu2, df(simu2, 10,10), col="green") # DF 1 = 10, DF = 10

# ETC. play around by increasing both degrees of freedom separately.

In Section 5, we will see how F-distribution relates to statistical testing of hypotheses.

3 Tests for normality

There are several ways to test whether your variables are normally distributed.

First, you can simply use descriptive statistics to test for normality. Let's see the descriptive

statistics for our numeric variables (Digit symbol and Benton task scores):

Check out normality for digit symbol and benton scores with describe:

> describe(deprivation)

# mean, st dev, median, skewness

Pay attention to the mean and median: are they close to each other? What about standard

deviation, are the values widely scattered around the mean? How high is the skewness - values

close to 1 hint for non-normality (exact limits depend on sample size)?

Second, while the descriptive statistics can give you hints, examining your variables visually is a

much more powerful way. Remember histograms:

# Plot all numeric variables in same layout matrix:

> layout(matrix(c(1,2,3,4,5,6), 3, 2))

> hist(digitsymbol_1, main="Digit symbol 1")

> hist(digitsymbol_2, main="Digit symbol 2")

> hist(digitsymbol_3, main="Digit symbol 3")

> hist(bentonerror_1, main="Benton error 1")

> hist(bentonerror_2, main="Benton error 2")

> hist(bentonerror_3, main="Benton error 3")

Also, you can take �quantile-quantile plots� of your variables. If the qq-plot follows the line, the

distribution is normal.
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> qqnorm(digitsymbol_1)

> qqline(digitsymbol_1)

Third, you can also test for normality explicitly:

# Either with Shapiro-Wilk test:

> shapiro.test(digitsymbol_1) # Shapiro-Wilk

# Or with Kolmogorov-Smirnov test:

> ks.test(digitsymbol_1, "pnorm", mean=mean(digitsymbol_1), sd=sd(digitsymbol_1)

3.1 Exercises

Test for normality in all our numeric variables (Digit symbol task at time points 1, 2, and 3; Benton

task at time points 1, 2, and 3):

Question 1 Take quantile-quantile plots.

Question 2 Perform normality tests and report the results.

4 T tests

T-tests are used to test whether the same distribution underlies two occasions. These two occasions

can be...

1. one sample and known population

2. two independent samples

3. one sample in two di�erent time points

All t-tests assume (i) that your sample size is at least 20, and (ii) that your variable is normally

distributed. If your sample size is smaller, you should look for non-parametric tests. If your

variable is not normally distributed, you should consider data transformations or non-parametric

tests.

Check our normality tests from the previous section. Do all the variables ful�ll these assumptions?
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4.1 One-sample t-test

One-sample t-test can be used to compare one sample to the known population parameters. There-

fore, we need to know what the real population mean is.

Let's test whether the participants in our study are representative for the population in Digit

symbol test, i.e., whether the sample mean di�ers from the population mean. Assume that we

know the population mean in Digit symbol test, and it is 40.

Check the descriptive statistics �rst:

> summary(digitsymbol_1)

# check out mean: 42.23

# slightly above the population mean (40)

# but is the sample mean statistically significantly different from the

# population mean?

# i.e. are sample and population from the same distribution?

Use one-sample t-test to compare sample mean to assumed population mean 40:

> t.test(digitsymbol_1, mu=40)

T test shows that the mean of our sample does not di�er from the assumed population mean

(t(46) = 1.33, p > .05).

4.2 Independent samples t-test

Independent samples t-test compares two sample means to each other and tests whether the two

samples are derived from the same underlying distribution.

Let's test whether baseline performance in Digit symbol task varies depending on age group. This

is done by performing a two-sample independent t-test for the digit symbol score in the two age

groups:

> t.test(digitsymbol_1 ~ age)

We �nd out that there are no di�erences in Digit symbol task baseline performance between

di�erent age groups (t(35) = 0.27, p > .05).

By default, R assumes that the variances for the two populations are unequal, and it applies the

Welch df modi�cation when running the analysis. If you can assume that the variances are equal,

you can also use

6



> t.test(digitsymbol_1 ~ age, var.equal=T)

How do the results of the t-test di�er under the equal variances and unequal variances assumptions?

We can also visualize our results using the boxplots from the di�erent samples in the same �gure:

> boxplot(digitsymbol_1 ~ age, xlab="Age group", ylab="Digit symbol score")

4.3 Repeated-measures t-test

Repeated-measures t-test (also called paired t-test) compares measurements from the same sample

to each other. For instance, we can test whether task scores di�er between di�erent time points

or experimental manipulations. The requirement is that we have measurements from the same

participants in di�erent occasions.

Let's test whether performance in Digit symbol task varies between baseline (time point 1) and

sleep deprivation (time point 2) by using a paired t-test:

> t.test(digitsymbol_1, digitsymbol_2, paired=T)

The performance in Digit symbol task does not di�er at baseline and after sleep deprivation

(t(46) = −0.79, p > .05).

We can also take boxplots again:

> boxplot(digitsymbol_1, digitsymbol_2, ylab="Digit symbol score", xlab="Time point")

(You can also use mean plots, these will be introduced later in Section 5.1.2).

4.4 Exercises

Question 3 Are there di�erences in baseline performance in (i) Digit symbol task, (ii) Benton

task between the two di�erent hormone treatment groups?

Question 4 Use repeated-measure t-tests to compare Digit symbol test scores between (i) times

1 and 3, (ii) times 2 and 3.

Question 5 Are there di�erences in Benton task performance between (i) times 1 and 2, (ii)

times 1 and 3, or (iii) times 2 and 3?
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5 Analysis of Variance

5.1 One-way ANOVA

One-way ANOVA includes one categorical variable and one continuous variable. Let's use one-

way ANOVA to test whether baseline performance in Digit symbol task varies between the three

education groups. This is done with aov function:

> A1 <- aov(digitsymbol_1 ~ education, data=deprivation)

Note the order of the arguments. The �rst argument is always the dependent variable (here, digit

symbol score). It is followed by a tilde (~) and the independent variable(s). We are interested in

the main e�ect of education so we add education as our only independent variable.

The aov function creates our ANOVA model. The model should always be saved as an object

(here, we used A1) so that we can further examine the model details using other functions. The

results of the ANOVA are printed with the summary command:

> summary(A1)

We see that the baseline Digit symbol scores do not di�er between education groups (F (2, 44) =

2.16, p > .05).

The mean values of each condition can be read out from the model using model.tables:

> model.tables(A1, "means")

This function gives you the total mean and the means separately for each category.

You can also get a graphical summary by using boxplot:

> boxplot(digitsymbol_1 ~ education,

xlab="Education group", ylab="Digit symbol score",

main="Baseline Digit symbol score by education group"

col="grey")

# diagnostic plots:

> layout(matrix(c(1,2,3,4),2,2))

> plot(A1)

The diagnostic plots give you the following information:

- check for heteroscedasticity (randomness of errors): residuals vs �tted, scale-location plots

- normality: q-q plot

- in�uential observations: leverage plot
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5.1.1 ANOVA assumptions

Now that we know the basic structure of how ANOVA is run in R, let's return to the assumptions

of ANOVA. These included the sample size of > 15 per group, normality, and homogeneity of

variance. We already know how to test for normality.

The heteroscedasticity plot in previous Section gives you the graphical information of homogeneity

of variance. You can also test for the homogeneity of variance using di�erent tests which are

implemented in R. The structure of the functions is similar to that of ANOVA models:

# The tests are from package 'car':

library('car')

# Levene's test:

> leveneTest(digitsymbol_1 ~ education)

# Bartlett's test:

bartlett.test(digitsymbol_1 ~ education)

5.1.2 Visualizing results

We have seen how to use box plots to visualize group di�erences:

> boxplot(digitsymbol_1 ~ education)

There are also other options for visualization, for instance the plotmeans function from gplots

package:

> library(gplots)

> plotmeans(digitsymbol_1~education, ylim=c(10,70))

# Check ?plotmeans for different modifications:

> plotmeans(digitsymbol_1~education, ylim=c(10,70), n.label=FALSE)

5.2 Two-way between subject ANOVA

When you have more than one independent variable, you can use two-way ANOVA.

To demonstrate this, we want to ask whether age group and hormone treatment a�ect baseline

performance in Digit symbol task. Thus, this is a 2x2 design with the factors being age and

ht_group. The independent variables are separated by an asterisk * when added in the ANOVA

- the asterisk indicates to R that the interaction between the two factors is interesting and should

be analyzed in addition to the main e�ects of each independent variable. (If interactions are not

important, replace the asterisk with a plus sign +.)

Run the analysis:
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> A2 <- aov(digitsymbol_1 ~ age*ht_group, data=deprivation)

> summary(A2)

> model.tables(A2, "means")

> layout(matrix(c(1,2,3,4),2,2))

> plot(A2)

We see that age and hormone treatment do not a�ect baseline Digit symbol task performance

alone (F (1, 43) = 0.08, p > .05 and F (1, 43) = 0.02, p > .05, respectively), but that the interaction

e�ect of age and hormone treatment together is signi�cant (F (1, 43) = 6.81, p < .05).

Let's use visualizations to help our interpretations. First, the familiar boxplots:

> boxplot(digitsymbol_1 ~ age*ht_group)

The boxplot does not really help our interpretation. Fortunately, R has many tools for data

visualization, and one especially for two-way ANOVA: the interaction.plot.

> interaction.plot(age, ht_group, digitsymbol_1)

> interaction.plot(age, ht_group, digitsymbol_1, type="b", col=c(1:3), leg.bty="o",

leg.bg="beige", lwd=2, pch=c(18,24,22), xlab="Age group",

ylab="Digit symbol task score", main="Interaction plot")

5.2.1 Remember the type of Sum of Squares

Note that R provides Type I sequential sum of squares (not the default Type III marginal sum of

squares reported by e.g. SPSS!). Thus, the order of independent variables matters. If you want

to use the Type III sum of squares, use e.g. Anova function from package car:

> library(car)

> Anova(A2, type=3)

For more regarding the di�erent types of sum of squares, see

http://egret.psychol.cam.ac.uk/statistics/R/anova.html

5.2.2 Post-hoc comparisons

Post-hoc pairwise comparisons are commonly performed after signi�cant e�ects have been found

when there are three or more levels of a factor. After an ANOVA, you may know that the means

of your response variable di�er signi�cantly across your factor, but you do not know which pairs of

the factor levels are signi�cantly di�erent from each other. At this point, you can conduct pairwise

comparisons.
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Either using pairwise.t.test:

> pairwise.t.test(digitsymbol_1, education, p.adj="none")

# you can also adjust the p values according to a variety of methods:

> pairwise.t.test(digitsymbol_1, education, p.adj="bonf")

> pairwise.t.test(digitsymbol_1, education, p.adj="holm")

Or if you want to run Tukey post-hoc test speci�cally, you have to do it by using TukeyHSD function:

> TukeyHSD(A1)

5.3 Exercises

Question 6 Does hormone treatment a�ect Digit symbol baseline performance di�erently in

di�erent education groups?

Question 7 Do education and age together a�ect the Digit symbol baseline performance?

Question 8 Let's investigate the baseline performance in Benton task next. Do age, education or

hormone treatment have a main e�ect on Benton task performance? What about their interaction

e�ects? Report your results both verbally and visually.

6 Exercises

Next we will apply our skills on another dataset, the already familiar naming dataset. This time,

it comes in a di�erent format than in previous weeks - namely in the wide format 1. Also note

that participants with missing values have been removed.

The following variables are included:

• iq = intelligence (continuous)

• hrs = hours spent on reading (continuous)

• sex (female, male)

• ms.regular = average time taken to read regular words (continuous)

1This was done with the following command:
> naming_wide <- reshape(naming, direction="wide", idvar=c("hrs", "iq", "sex"), timevar="word.type")
'reshape' is a useful command when working with longitudinal type of data. It allows you to change your data

from long to wide format or the other way round.
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• ms.exception = average time taken to read exceptional words (continuous)

• reading_time = reading category based on hours spent on reading (high, low, medium)

You can �nd the dataset here: http://becs.aalto.fi/~heikkih3/naming_wide.csv.

Load the dataset into a data frame in R using read.csv. Remember to check for factors and

missing values �rst! Correct these if necessary using guidelines from previous weeks.

Once your data frame is in its �nal format, it is useful to attach it. First, remove other attached

datasets with detach(), then attach naming instead (attach).

In the following exercises, run the relevant analysis and report your results both verbally and visu-

ally. Think carefully what kind of plot describes your results best and add necessary modi�cations

(labels, title, ...). Save the plots for the signi�cant results you get.

Question 9 Does the mean intelligence in our sample di�er from the population mean of intel-

ligence (=100)? (one-way t-test)

Question 10 Are there di�erences between men and women in intelligence? (t-test)

Question 11 Are there di�erences between men and women in hours spent on reading? (t-test)

Question 12 Are there di�erences between the three reading categories in intelligence? (one-way

anova)

Question 13 Does the time taken to read the word di�er between regular and exceptional words?

(paired t-test)

Question 14 Does hours spend on reading a�ect the time taken to read regular words? What

about exceptional words? (one-way anova - remember that your independent variable needs to be

categorical!)

Question 15 Does gender a�ect how hours spent on reading a�ect the time taken to read regular

words? What about exceptional words? (two-way anova)
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