

t-tests, ANOVA

Experimental and Statistical Methods in Biological Sciences I

Heini Saarimäki, BECS 02/10/2014

Outline for today

- Introduction to the basic concepts
- Demos and exercises
 - Simulations: different distributions
 - Testing for normality
 - t-tests
 - ANOVA

Outline for today

Now...

- 1. Starters
- 2. Simulations of distributions
- 3. Tests for normality
- 4. t-tests
- 5. ANOVA

What we know after today

1. Preparing your data

When preparing your data, check that...

- Factors are factors
- Missing values are coded as NAs
- 2. Describing your data
- Plotting
- Descriptive statistics

What we know after today

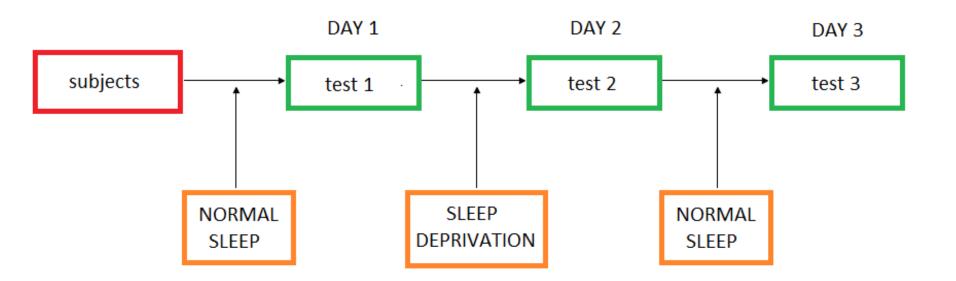
1. Preparing your data

When preparing your data, check that...

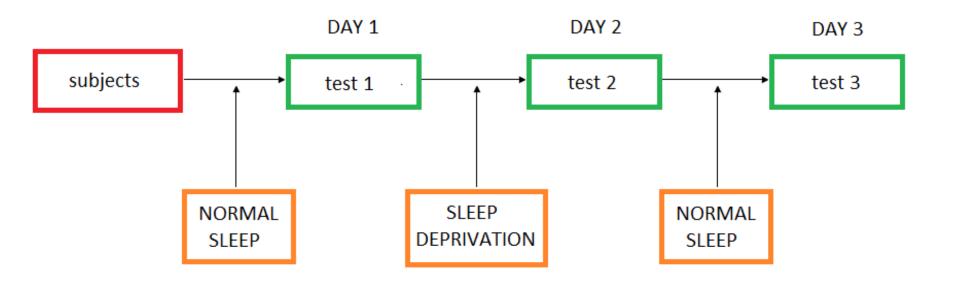
- Factors are factors
- Missing values are coded as NAs
- 2. Describing your data
- Plotting
- Descriptive statistics

3. Statistical comparisons

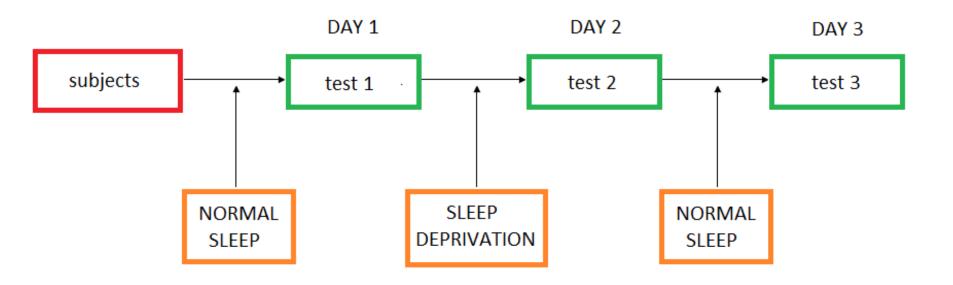
- t-tests
- ANOVA


2. Simulations of distributions

- In exercises, we will simulate the shape of three different kinds of distributions:
 - The normal distribution
 - Student's t-distribution (relevant for t-tests)
 - Fisher's F-distribution (relevant for ANOVA)
- Don't worry about the R code for simulations just copy+paste and play around with the parameters.

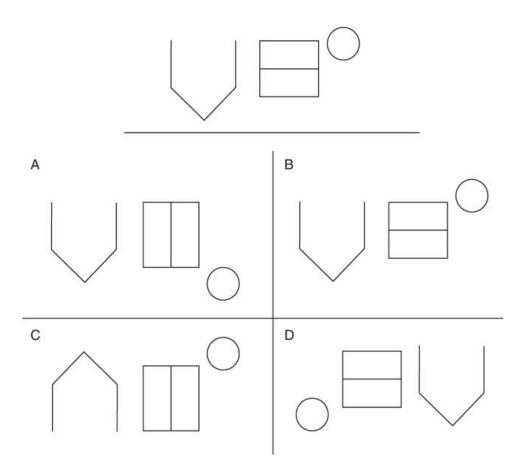


Variable	Туре	Details
age group	categorical	1 = young 2 = old
education	categorical	1 = comp. school 2 = secondary 3 = higher
hormone treatment	categorical	user group control group
digit symbol task	continuous	at time points 1, 2, 3
benton task errors	continuous	at time points 1, 2,3



Categories: age group, education, hormone treatment

Longitudinal tests: Digit symbol task, Benton task errors


Digit symbol task

1 2 3 4 5 6 7 8 9 ∨ □ ∸ ∧ X □ ⊏ 〒 □																			
2	1 ∨	3	1 V	4	2	1	3	5	3	2	1	4	2	1	3	1	2	4	1
	Ţ		Ţ																
				_				_	. –		_	_			_				
						2	3 -	4		5	6	7 □	8		9				
2	1	3	1	2		3	1	4	2	4	2	5	1	4	3	5	2	6	2
2	'	5		2		5		4	2	4	2	5	1	4	5	5	2	0	2
1	6	5	2	4	7	3	5	1	7	6	3	8	5	3	6	4	2	1	8
9	2	7	6	3	5	8	3	6	5	4	9	7	1	8	5	3	6	8	2
7	1	9	3	8	2	5	7	4	1	6	7	4	5	8	2	9	6	4	3

Benton Visual

Retention Task

Parametric tests have assumptions...

- t-tests
 - Sample size > 20
 - Normality
 - Continuous variables
- ANOVA
 - Dependent variable is continuous
 - One or more discrete (categorical) variables defining group membership
 - Sample size > 15 per group
 - Normality
 - Equality of variances

Parametric tests have assumptions...

- t-tests
 - Sample size > 20
 - Normality
 - Continuous variables
- ANOVA
 - Dependent variable is continuous
 - One or more discrete (categorical) variables defining group membership
 - Sample size > 15 per group
 - Normality
 - Equality of variances

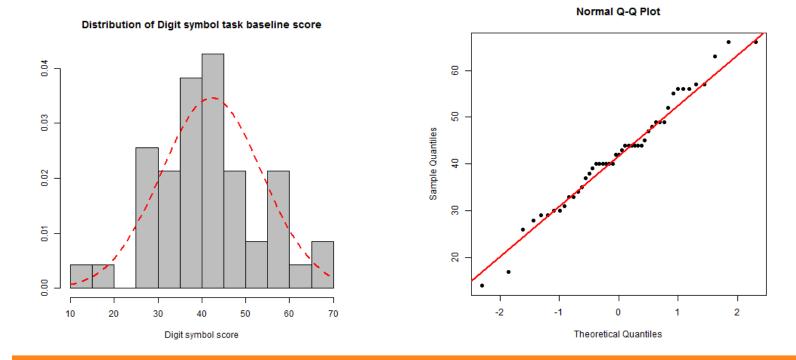
- Descriptive statistics:
 - Mean, st dev, median, skewness, ...
- Plotting:
 - Histograms with normal curve added
 - Quantile-quantile plots
- Tests:
 - Kolmogorov-Smirnov
 - Shapiro-Wilk

Descriptive statistics: describe

– Mean, st dev, median, skewness, ...

> describe(deprivation[,5:10])

	var	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
digitsymbol_1	1	47	42.23	11.51	42	42.26	10.38	14	66	52	-0.05	-0.13	1.68
digitsymbol_2	2	47	42.91	12.40	44	42.49	10.38	17	70	53	0.28	-0.15	1.81
digitsymbol_3	3	47	48.49	13.81	48	48.08	11.86	15	81	66	0.23	0.28	2.01
bentonerror_1	4	47	6.04	2.42	6	5.97	2.97	2	11	9	0.20	-0.91	0.35
bentonerror_2	5	47	5.45	2.87	6	5.26	2.97	1	13	12	0.55	-0.06	0.42
bentonerror_3	6	47	3.77	2.42	4	3.64	2.97	0	11	11	0.63	0.61	0.35



Plotting:

- Histograms with normal curve added:
- Quantile-quantile plots:

hist

qqnorm, qqline

Tests:

- Kolmogorov-Smirnov: ks.test shapiro.test
- Shapiro-Wilk:

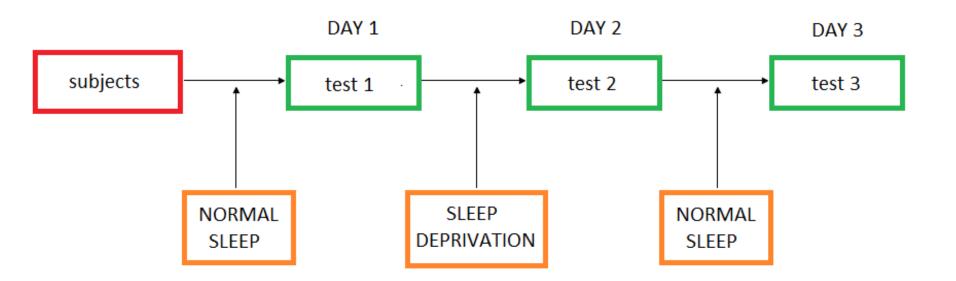
```
> shapiro.test(digitsymbol 1)
```

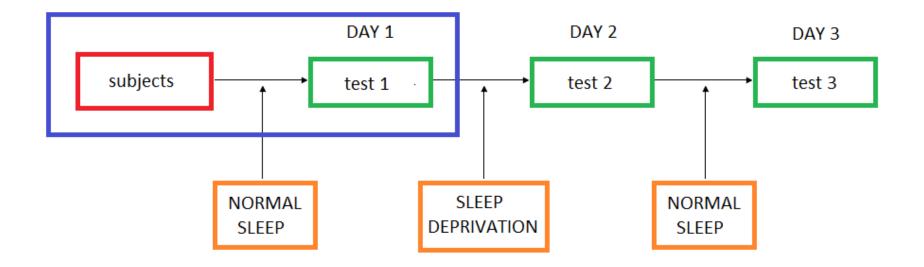
Shapiro-Wilk normality test

```
data: digitsymbol 1
W = 0.9809, p-value = 0.6287
```

```
> ks.test(digitsymbol 1, "pnorm", mean=mean(digitsymbol 1), sd=sd(digitsymbol 1))
```

```
One-sample Kolmogorov-Smirnov test
```

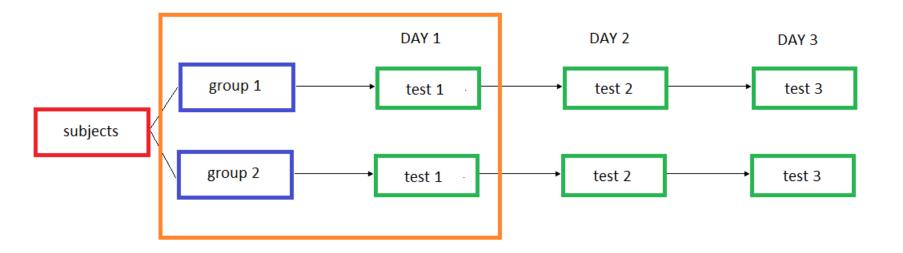

```
data: digitsymbol 1
D = 0.0986, p-value = 0.7506
alternative hypothesis: two-sided
```



- One-sample t-test
- Independent samples t-test
- Repeated measures t-test
- Assumptions check for these before starting:
 - Normality
 - Sample size > 20
 - Continuous variables

4. t-tests: one-sample t-test

Example:

Does our sample mean in baseline Digit symbol task differ from the known population mean (=40)?



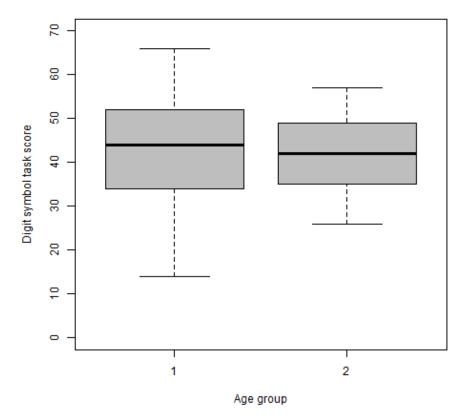
4. t-tests: one-sample t-test

No differences between our sample mean and the population mean (t(46) = 1.33, p > .05).

4. t-tests: independent samples t-test

Example:

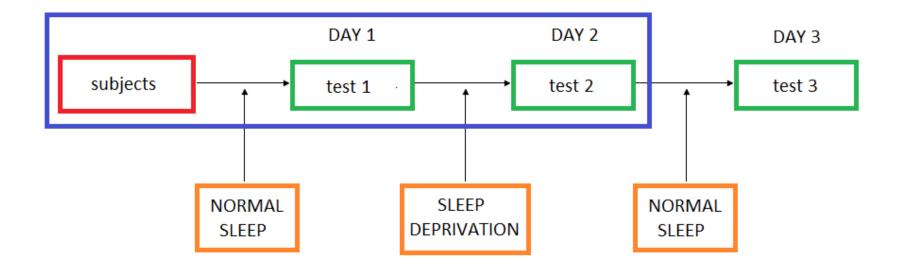
Do the baseline Digit task scores differ between younger and older participants?



4. t-tests: independent samples t-test

No differences between age groups in Digit symbol task scores (t(35) = 0.27, p > .05).

4. t-tests: independent samples t-test


Digit symbol baseline score for age groups separately

> boxplot(digitsymbol_1 ~ age,

xlab="Age group", ylab="Digit symbol task score", main="Digit symbol baseline score for age groups separately, col="grey", ylim=c(0,70))

4. t-tests: repeated measures t-test

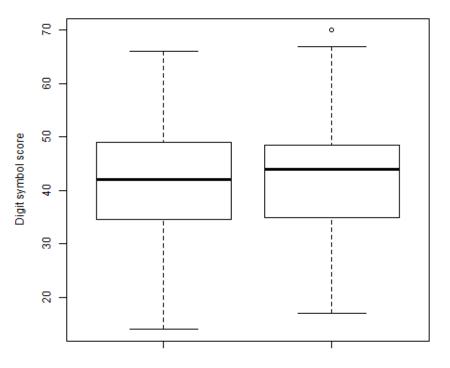
Example:

Does the Digit score task performance differ between baseline and when tested after sleep deprivation?

4. t-tests: repeated measures t-test

> t.test(digitsymbol_1, digitsymbol_2, paired=T)

Paired t-test


```
data: digitsymbol_1 and digitsymbol_2
t = -0.786, df = 46, p-value = 0.4359
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -2.424453   1.062751
sample estimates:
mean of the differences
        -0.6808511
```

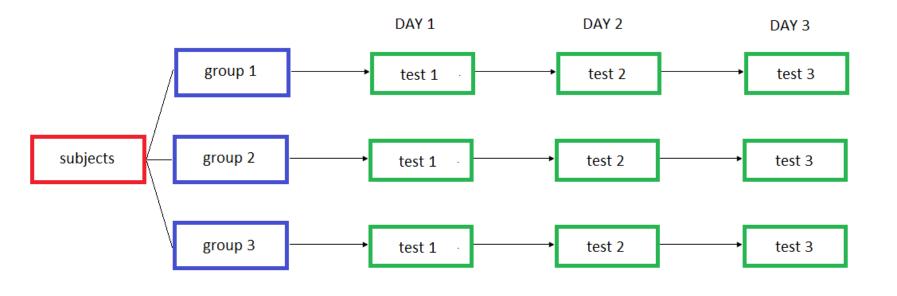
No differences in Digit symbol task scores between baseline and when tested after sleep deprivation (t(36) = -0.79, p > .05).

Aalto University School of Science

4. t-tests: repeated measures t-test

Digit symbol scores between time points 1 and 2

Time point


> boxplot(digitsymbol_1, digitsymbol_2, xlab="Time point", ylab="Digit symbol score", main="Digit symbol scores between time points 1 and 2")

What if we have more than three groups?

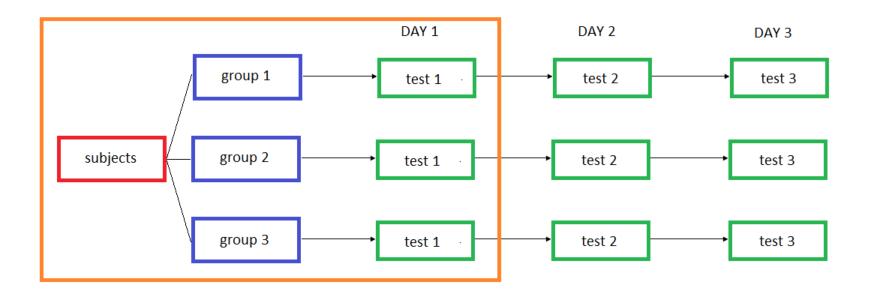
What if we want to take into account multiple categorizations at the same time?

5. ANOVA

- 1. ANOVA assumptions
- 2. Different types of ANOVA
 - One-way between subject
 - Two-way between subject
 - One-way within subjects
 - (Two-way within subjects)
- 3. Post-hoc comparisons

5. ANOVA: assumptions

- ANOVA assumptions:
 - Dependent variable is continuous
 - One discrete variable defining group membership
 - Sample size > 15 per group
 - Normality
 - Equality of variances

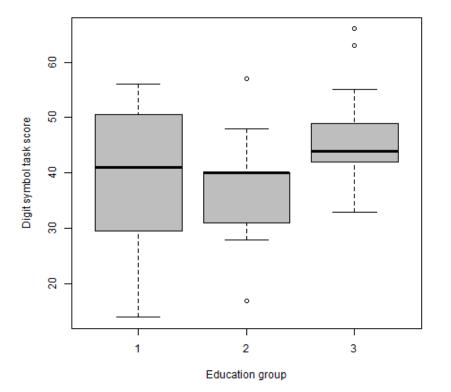

5. ANOVA: building your model

Note the notation in R:

y ~ x # one main effect y ~ x1 + x2 # two main effects y ~ x1 * x2 (= y ~ x1 + x2 + x1*x2) # two main effects, interaction effect

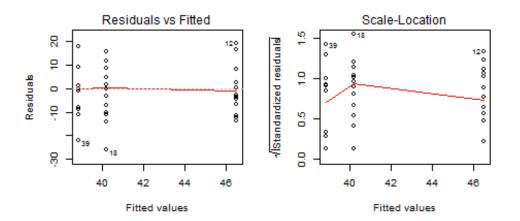
where y = dependent variable x1, x2 = independent variables

Example:

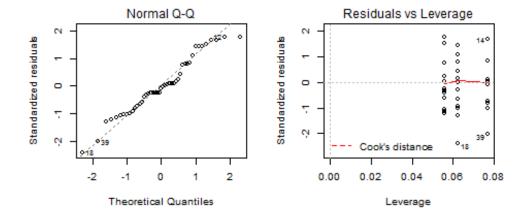

Do baseline Digit symbol task scores differ between education groups?

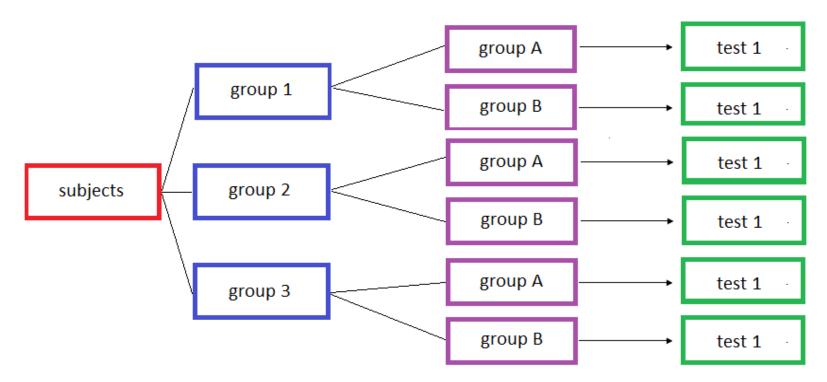

```
> A1 <- aov(digitsymbol 1 ~ education)</p>
> summary(A1)
           Df Sum Sq Mean Sq F value Pr(>F)
education 2 544 271.9 2.155 0.128
Residuals 44 5553 126.2
> model.tables(A1, "means")
Tables of means
Grand mean
                                                  aov(x \sim y)
42.23404
                                                  summary(model)
                                                  model.tables
 education
       1 2 3
   40.19 38.85 46.5
rep 16.00 13.00 18.0
```

No differences between education groups in Digit symbol task scores (F(2,44) = 2.16, p > .05).


Aalto University School of Science

Digit symbol task baseline score in different education groups


> boxplot(digitsymbol_1 ~ education, xlab="Education group", ylab="Digit symbol task score", main="Digit symbol task baseline score in different education groups", col="grey")


Diagnostic plots:

> layout(matrix(c(1,2,3,4),2,2))
> plot(A1)

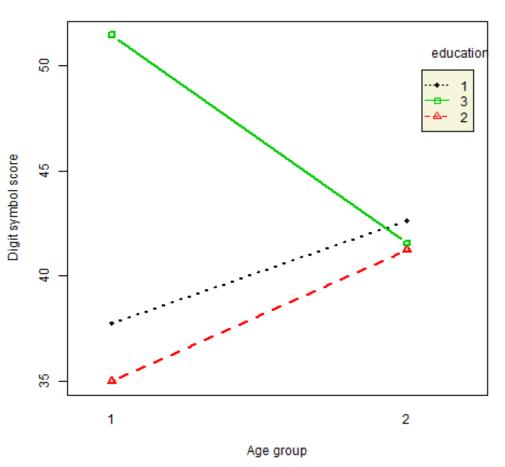
DAY 1

Example:

Do education and age effect the baseline Digit symbol task scores?


```
> A2 <- aov(digitsymbol 1 ~education * age)
> summary(A2)
                                                               > model.tables(A2, "means")
            Df Sum Sq Mean Sq F value Pr(>F)
                                                               Tables of means
             2 544 271.9 2.276 0.115
education
                                                               Grand mean
             1 3 2.9 0.024 0.877
age
education:age 2 652 326.2 2.731 0.077.
                                                               42.23404
Residuals 41 4897 119.4
____
                                                                education
                                                                                         education:age
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
                                                                       1
                                                                            2 3
                                                                                                 age
                                                                   40.19 38.85 46.5
                                                                                         education 1
                                                                                                       2
                                                               rep 16.00 13.00 18.0
                                                                                              1 37.75 42.62
                                                                                              rep 8.00 8.00
                                                                                              2 35.00 41.25
                                                                age
                                                                      1 2
                                                                                              rep 5.00 8.00
    aov(y ~ x1 * x2)
                                                                   42.5 42
                                                                                                 51.44 41.56
                                                                                              3
    summary(model)
                                                               rep 22.0 25
                                                                                              rep 9.00 9.00
    model.tables
```

No differences between education groups in Digit symbol task scores (F(2,44) = 2.16, p > .05).



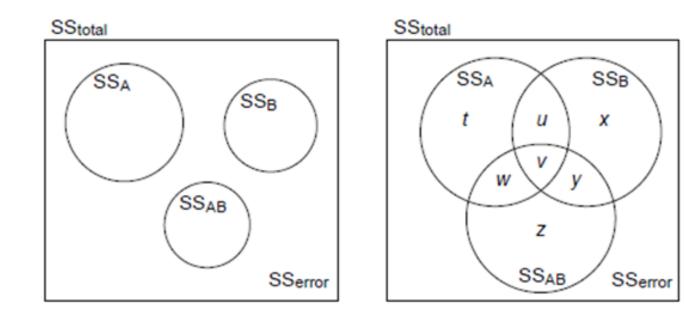
Digit symbol task baseline score by Education and Age

Education group - Age group

boxplot(digitsymbol_1 ~ education * age, xlab="Education group - Age group", ylab="Digit symbol task score", main="Digit symbol task baseline score by Education and Age", col=c("green", "grey", "blue"))

Interaction plot

interaction.plot(age, education, digitsymbol_1, type="b", col=c(1:3), leg.bty="o",leg.bg="beige", lwd=2, pch=c(18,24,22), xlab="Age group", ylab="Digit symbol score", main="Interaction plot")


- Note: Type of sum of squares!!
 - the order in which independent variables are fed
 - sequantial, hierarchical, or orthogonal
- R (aov) uses Type I by default
- e.g. SPSS uses Type III by default

Type of sum of squares:

Type III: orthogonal

Type I: nonorthogonal

Type of sum of squares: how to compare different types

- take type I SS with aov first
- check other types with Anova()

5. ANOVA: post-hoc comparisons

I get significant ANOVA, but what causes the difference between groups?

```
E.g., after the simple one-way ANOVA:
```

```
Anova1 <- aov(digitsymbol_1 ~ education)</pre>
```

```
pairwise.t.test(digitsymbol_1, education, p.adj="none")
pairwise.t.test(digitsymbol_1, education, p.adj="bonf")
pairwise.t.test(digitsymbol_1, education, p.adj="holm")
TukeyHSD(Anova1)
```


5. ANOVA: post-hoc comparisons

BUT...

- Better than post-hoc tests are the planned comparisons, i.e. contrasts!
- We will learn how to do this in R when using regression next week...

Other things regarding exercises...

Data can be presented either in a wide or long format: function reshape modifies the format

wide format:

ID	age	edu	ht	ds1	ds2	ds3	bt1	bt2	bt3
1	1	1	user	35	36	39	10	11	7
2	2	2	control	45	42	47	5	5	4
3	1	3	control	40	39	49	6	8	3

Other things regarding exercises...

Data can be presented either in a wide or long format: function reshape modifies the format

wide format:

ID	age	edu	ht	ds1	ds2	ds3	bt1	bt2	bt3
1	1	1	user	35	36	39	10	11	7
2	2	2	control	45	42	47	5	5	4
3	1	3	control	40	39	49	6	8	3

Other things regarding exercises...

	ID	age	edu	ht	time	ds_score	bt_score
long	1	1	1	user	1	35	10
format:	1	1	1	user	2	36	11
	1	1	1	user	3	39	7
(remember	2	2	2	control	1	45	5
'naming'	2	2	2	control	2	42	5
dataset?)	2	2	2	control	3	47	4
	3	1	3	control	1	40	6
	3	1	3	control	2	39	8
	3	1	3	control	3	49	3

For exercises and homework

Remember to report your results properly:

- Not just R code
- But written report and interpretation of the results
- Should include the standard reporting of values (see lecture slides)

