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Outline for today

* Introduction to the basic concepts

« Demos and exercises
— Correlations
— Regression models

— Contrasts
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1. Preparing your data

« Factors as factors

* Missing values coded as NAs
2. Describing your data

* Plotting

» Descriptive statistics

3. Statistical comparisons

e T-tests

« Between-subjects ANOVA

Ao Aalto University
[ |



What we know after today

1. Preparing your data

2. Describing your data

3. Statistical comparisons

4. Correlations

 Correlations

* Regression
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0. One step back...
Testing for hypotheses

1) State the hypotheses (null and alternative)

example:
HO: there are no differences between groups
H1: there is a difference between groups

Aalto University
School of Science
||



0. One step back...
Testing for hypotheses

1) State the hypotheses (null and alternative)

2) Formulate an analysis plan (how to use sample data to evaluate the null
hypothesis)

significance level: 0.05 is acceptable
test method: two-sample t test
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1) State the hypotheses (null and alternative)

2) Formulate an analysis plan (how to use sample data to evaluate the null
hypothesis)

3) Analyze sample data (find the value of the test statistic described in the
analysis plan)

calculate standard error, degrees of freedom

use these to calculate test statistic (t-score)

assess the p value (=probability of observing a sample statistic as
extreme as the test statistic)
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T test

control treatment

group group
mean mean

Aalto University
School of Science
[ |



T test

control treatment %
group group Ayl
mean mean | &
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T test

sighal difference hetween group means

noise varability of groups
s o A
— Xy = X
SE(X; - Xc)

= t-value
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1) State the hypotheses (null and alternative)

2) Formulate an analysis plan (how to use sample data to evaluate the null
hypothesis)

3) Analyze sample data (find the value of the test statistic described in the
analysis plan)

calculate standard error, degrees of freedom

use these to calculate test statistic (t-score)

assess the p value (=probability of observing a sample statistic as
extreme as the test statistic)
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1) State the hypotheses (null and alternative)

2) Formulate an analysis plan (how to use sample data to evaluate the null
hypothesis)

3) Analyze sample data (find the value of the test statistic described in the
analysis plan

4) Interpret results (apply the decision rule described in the analysis plan — if
the value of the test statistic is unlikely, based on the null hypothesis, reject
the null hypothesis)

compare p value to the significance level, reject null hypothesis when
p value is less than significance level
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P=0.05 P=0.05
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1) State the hypotheses (null and alternative)

2) Formulate an analysis plan (how to use sample data to evaluate the null
hypothesis)

3) Analyze sample data (find the value of the test statistic described in the
analysis plan

4) Interpret results (apply the decision rule described in the analysis plan — if
the value of the test statistic is unlikely, based on the null hypothesis, reject
the null hypothesis)

compare p value to the significance level, reject null hypothesis when
p value is less than significance level
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Data for the lecture

« If you want to play around with it, you can find the data here:

— http://becs.aalto.fi/~heikkih3/ses

— Use read.table and set header=TRUE:
data <- read.table(‘http://becs.aalto.fi/ ~heikkih3/ses’,
header=T)

 Data has been simulated
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1. Getting started

 Loadin data
* Prepare the data as usual
— Missing values, factors as factors
* Describe the data
— summary, describe, plots
« What's new: learn some new ways to look at the data

— scatterplots, corr.test, coplot, xyplot
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summary(data)

> summary (data)
Intelligence Height SES =ex
Min. : B6.74 Min. :104.6 Min. :1.400 Min. :0.0000
1=t 0u.: S96.62 l=t Qu.:116.8 l=t Qu.:2.700 1=t Om.:0.0000
Median : 95.91 Median :120.1 Median :3.000 Median :0.0000
Mean :100.71 Mean :120.4 Mean :3.031 Mean :0.4979
3rd Qu.:103.36 3rd Qu.:123.9 3rd Qu.:3.400 3rd Qu.:1.0000
Max. :400.00 Max. :250.0 Max. 2. 000 Max. :1.0000
HA'= i1

« Data has some obvious outliers
« Sex is not coded as a factor

* NA already coded in the data
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describe(data)

> describe (data)
var n mean 2d median trimmed mad min max range =skew kurtosis

Intelligence 1 487 100.71 14.45 95.5%1 100.04 5.00 E8e.74 400 313.26 18.23 374.81

Height Z 487 120.43 7T7.8%9 120.06 120.19 5.34 104.60 250 145.40 9.05 147.22
S5ES 3 487 3.03 0.51 3.00 3.03 0.5%89 1.40 5 3.60 0.00 0.01
sex 4 48g o.50 0.50 0.00 0.50 0.00 0.00 1 1.00 0.01 =-2.00
1
library(psych)
describe(data)

[ O e Y
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Examine trends visually and statistically

plot(data)

« What does our data look like? - scatterplot between all variables

corr.test(data)

« Simple correlation matrix is often an easy way to start identifying trends

« We learn more about correlations in a bit...
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corr.test(data)

> corr.test(data) * Correlation matrix
Call:corr.test(x = data) )
Correlation matrix y Sample Size

_ Intelligence Height SES sex ° p values
Intelligence 1.00 0.72 0.22 0.00
Height 0.72 1.00 0.21 -0.01
SES 0.22 0.21 1.00 0.03
sex 0.00 -0.01 0.03 1.00

Sample Size
Intelligence Height SES =ex

Intelligence 487 487 487 486
Height 487 487 487 486
SES 487 487 487 486
sex 486 486 486 4B6

Probability walues (Entries abowve the diagonal are adjusted for multiple tests.)
Intelligence Height SES sex

Intelligence Q.00 0.00 0.00 1
Height 0.00 0.00 0.00 1
SES 0.00 0.00 0.00 1
sex 0.96 0.91 0.58 0
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plot and corr.test

* The data is being heavily influenced by at least one outlier
« Height and intelligence are VERY strongly associated

 Sex still needs to be recoded
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Preparing the data

dataSsex <- factor(data$sex, levels=c(0,1), labels=c(”male”,
”female™)

which(Height > 200)
which(intelligence > 200)

which(is.na(data$sex))

« The problem is being caused by case 38

data2 <- data[-38,]
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Examine data2

detach(data)
 attach(data2)

» plot(data2)

e corr.test(data2)

« Evaluate impact of dropping the case visually

* You can if you wish rerun all analyses on data and data2, for comparison
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No more extreme
outliers distorting
our data
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corr.test comparison

* data

Intelligence
Height
SES

« data2

A:

Intelligence
Height
SES
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Intelligence
1.00
0.72
0.22

Intelligence
1.00
0.09
0.16

Height
0.72
1.00
0.21

Height
0.09
1.00
0.13

SES

0.22
0.21
1.00

SES

0.16
0.13
1.00



coplot(Intelligence
~ Height | sex,
x1lim=c(105,135)
ylim=c(80,120))
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2. Correlation

 Covariance and correlations

 Different correlation coefficients:
— Pearson
— Spearman

— Partial
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Visualization: scatterplots

plot(data)
plot(SES ~ Height)

SES
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Pearson product-moment correlation
coefficient

« Covariance and correlation between two variables
cov(SES, Intelligence)
cor(SES, Intelligence)
cor.test(SES, Intelligence)
— Tests for null hypothesis that correlation = 0
* For the whole data frame
corr.test(data2)

« Gives Pearson’s correlation coefficient by default
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Pearson product-moment correlation
coefficient

+ Gives
— Correlation coefficient
— Absolute value, positive vs negative correlation

— T test statistics and p value
« Pairwise deletion of cases is default

— If want to select just complete cases, use "complete”
« Adjust for multiple tests

— Modify tests by changing "adjust”
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Pearson product-moment correlation
coefficient

> corr.test (data)
Call:corr.testi(x = data)
Correlation matrix

 p values:
raw values below diagonal,
values above diagonal are

Intelligence Height 3E3  =ex adjusted for multiple tests
Intelligence 1.00 0.72 0.22 0.00
Height 0.72 1.00 0.21 -0.01
SES 0.22 0.21 1.00 0.03
sex 0.00 -0.01 0.03 1.00

Sample S5ize
Intelligence Height 3SES5 =ex

Intelligence 487 487 487 486
Height 487 487 487 486
SES 487 487 487 4E6
sZex 486 486 486 4EB6

Probability wvalues (Entries above the diagonal are adjusted for multiple tests.)
Intelligence Height 3SES =ex

Intelligence 0.00 0.00 0.00 1
Height 0.00 0.00 0.00 1
SES 0.00 0.00 0.00 1
sex 0.96 0.91 0.58 0
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Spearman’s rank correlation coefficient

« Similar, but now add "method” as a named argument:
cor.test(SES, Intelligence, method="spearman”)

corr.test(data2, method="spearman’)

e« Same details:
— Correlation coefficient

— Result of t test
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Partial correlations

* pcor.test(x,y,z,) from ppcor package

pcor.test(SES, Intelligence, Height)

— Partial correlation between SES and Intelligence while controlling for
Height

 Results:

— Coefficient, p value, t value
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3. Regression models

« Concepts

* How to build up your model

« Simple model with one predictor
— Testing for assumptions

* Another model with two predictors
— Model comparison

* Modeling interactions and polynomials

Aalto University
School of Science
[ |



« ANOVAIs just a special case of a linear model
— Where predictor is categorical

« Infact, the information stored by R in both cases is similar — just the standard
output differs:

— ANOVA:
summary(anova.model) # ANOVA table
summary. lm(anova.model) # regression table
— Regression:
summary(reg.model) # regression table
anova(reg.model) # ANOVA table
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« We can predict any data using the following general equation:
outcome; = model + error;

» Describing a straight line:
Yi = by + b1X; + g

b;

* Regression coefficient for the predictor, slope of the regression line

bg
* Intercept (value of Y when X = 0)
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Linear regression

. FIGURE 7.2
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*e |dea:

— Fit a regression line to the data
* The regression line summarizes or models your observations

 Predicts a value on the outcome variable (Y_pred) for each value of
a single observed variable, X

 How?
— Method of least squares — provides the regression line in which

the sum of squared differences between the observed values
and the values predicted by the model is as small as possible

° Z(Y - Ypred)z
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Sums of squares

*« Total sums of squares (SS_total)

— Sum of squared differences between observed values of Y and
the mean of Y

— SStotal = Z(Y - Ymean)z
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=Y =Y, ea = 8.30

mean
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Sums of squares

*« Total sums of squares (SS_total)

— Sum of squared differences between observed values of Y and
the mean of Y

— SStotal = 2(Y — Ymean)z
« Residual sums of squares (SS_residual)

— Sum of squared differences between observed values of Y and
predicted values of Y

2
— SSresidual = Z(Y - Ypred)
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‘*« Total sums of squares (SS_total)

— Sum of squared differences between observed values of Y and the
mean of Y

- SStotal = Z(Y _ Ymean)z
* Residual sums of squares (SS_residual)

. — Sum of squared differences between observed values of Y and
predicted values of Y

— SSresidual = Z(Y - Ypred)z
 Model sums of squares (SS_model)

— Sum of squared differences between predicted values of Y and the
mean of Y

— SSimodet = L(Yprea — mean)
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Yoeg = 12.49

.;'Il_-

Ypred — Ymean = 9-96

\‘r’ =6.92

mean




*+ Total sums of squares (SS_total)

— Sum of squared differences between observed values of Y and the
mean of Y

- SStotal = Z(Y _ Ymean)z
* Residual sums of squares (SS_residual)

— Sum of squared differences between observed values of Y and
predicted values of Y

— SSresidual = Z(Y - Ypred)z
 Model sums of squares (SS_model)

— Sum of squared differences between predicted values of Y and the
mean of Y

— SSmodet = X (Yprea — Ymean) = SS_total — SS_residual

Ao Aalto University
[ |



*« Testing the model: R"2

— The proportion of variance accounted for by the regression
model

_ p2 _55m
SST

— Indicates how much the model improves the prediction of Y over
just using the mean of Y

 (in ANOVA: how much does adding a separate group
mean improve the prediction of Y over just using the
same mean for all groups)
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Regression models

« R uses function lm

y ~ A # A is continuous
y ~ as.factor(A) # A is categorical
y~A+B # models A and B main effects
y ~A+ B+ A:B # models A, B, and their interaction
y ~ A*B # shortcut for: y ~ A + B + A:B
» Create variables for polynomial regression
A 2 = ar2
A 3 = a”3

« Save results of Im():
modell <- 1m()
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Relationship with ANOVA

 Looks familiar?

« This is because ANOVA is part of the same family: it is just a special case
of general linear model

— Where predictor is categorical variable
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Simple model

modell <- 1m(Height ~ SES)

« SES is our only predictor

- Data about the model stored in model1
summary(modell)
anova(modell)
coefficients(modell)
confint(modell, level=0.95)
plot(modell)

fitted(modell)
resid(modell)
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summary(modell)

> summary (modell)

Call:
Im({formula = Height ~ SE5, data = datal)

BEesiduals:
Min 10 Median 30
-15.3935 -3.4263 -0.1277 3.8421 13

Coefficients:

Eztimate 5td. Error t wvalue
(Intercept) 1lle.1517 1.4414 B80.583
SES 1.3240 0.4697 2.819

Signif. codes: O '#*#*#%f 0,001 ****f 0.01

Frixltl)
< 2e-1&
0.00502

freedom

Re=sidual =tandard error: 5.219 on 484 degrees of
Multiple R-=guared: 0.01el5, Adjusted R-=quared: 0.01412
F-ztatistic: 7.946 on 1 and 484 DF, p-value:

0.005018
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summary(modell)

Gives data on coefficients

— beta 0 = intercept
— beta_1 = gradient
— Asin...
y = beta 0 + beta 1 *x
RA2 and adjusted R”"2

Significance of predictors

F-ratio
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anova(modell)

> anova (modell)
Analv=i=s of Variance Table

Eezponse: Height

Df 5S5um S5g Mean 5g F wvalue

SES 1 216.4 216.433
Regsiduals 484 13183.7 27.232%8

Signif. codes: g Y===F 0 _001

« Sums of squares

- DF

T7.9457 0.005018 **

o

0.01

Fr (>F)

N

0.03

* anova is very useful when you want to COMPARE models
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layout(matrix(c(1,2,3,4),2,2))

plot(modell)
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Plotting the regression line
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Testing the assumptions

* Influential cases
* Multicollinearity
 Homoscedasticity

* Linearity

* Parsimonity!

— More complex models are penalized in adjusted R"2
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« Cook’s distances
influence.measures(modell)
— Tests which cases have a large impact on the model
— Can also be identified graphically

— Cases above 0.5 or 1 may be problematic, though some suggest
sample size must be taken into account

— Note case 38 in "data”
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Fesiduals vs Leverage
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Multicollinearity

* Independent variables should not be highly intercorrelated

« Can be dealt with by averaging the variables, or by factor analysis

* You can use the correlation matrix to examine this.
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Homoscedasticity

« Variance should be homogenous
library(car)
ncvTest(modell)
* Results should be non-significant
« Significant results indicate regression model may be biased

— In this case, transformation of data may help

Residuals vs. fitted plots are also useful

> ncvlest (modell)

HNon—-constant Variance S5core Test

Variance formula: ~ fitted.wvalues

Chisquare = 0.000% 64605 DEf = 1 o= 0.97519494
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Fesiduals vs Fitted
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« Can be identified from histograms
« Or take QQ-plot separately

« If the data points are distributed equally around the horizontal line, data is
likely linear

« If violated, non-linear transformation may help
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Mod_el interpretation

> summary (modell)

Call:
lm(formula = Height ~ SES5, data = datal)

FEesiduals:
Min 10 Median 30 Max
-15.3935 -3.42e3 -0.1277 3.6421 13.72%91

Coefficients:

Eztimate 5td. Error t walue Pr(>|t])
(Intercept) 116.1517 1.4414 E80.583 <« Ze-1g **%
SES 1.3240 0.4697 2.819 0.00502 *=

Signif. codes: 0 *‘#*%*=*%f 0,001 **=f O0.01 **f O0.05 *.7" 0.1 * " 1

Ee=sidual standard error: 5.219 on 484 degrees of freedom
Multiple R-=sguared: 0.01el5, Adju=sted R-squared: 0.01412
F-statistic: 7.946 on 1 and 484 DF, p-value: 0.005018
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Model interpretation

« SES predicts height significantly
 Look at R”2 for effect size

« What about adding another predictor?
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model2 <- Im(Height ~ SES+Intelligence)
« Here, SES is entered into the model first, followed by Intelligence
* We can test the effect of intelligence after accounting for SES

« We can test whether including intelligence makes for a better overall model
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summary(model2)

> summary (model?)

Call:
Im({formula = Height ~ S5ES5 + Intelligence, data = datal)

Eesiduals=:
Min 10 Median 30 Max
-15.4323 -3.5151 -0.155% 3.8376 13.8279

Coefficients:

Estimate 5td. Error t wvalue Pr(>|t])
(Intercept) 108.43589 4.86348 22.296 <2e-1g *w¥
SES 1.19758 0.47501 2.521 0.0120 =
Intelligence 0.08091 0.04872 1l.661 0.0974

Signif. codes: O “*=*f 0,001 ‘=*f 0.01 *** 0.05 *." 0.1 " 1

Eesidual =standard error: 5.21 on 483 degrees of freedom
Multiple RE-=qguared: 0.02174, Adjusted ERE-=sqguared: 0.017695
F-=tatistic: 5.366 on 2 and 483 DF, p-value: 0.0045954
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Model 2 interpretation

* Intelligence is not a significant predictor of height
« Does it improve our model?

« Use anova(modell,model2) and see if the extra predictor significanlty
improves the model
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anova(modell,model?2)

> anova (modell model?l2)
Analy=si=s of Variance Table

Model 1: Height -~

Model 2: Height =~
Re=s.Df R55 Df

1 484 13124

2 483 13109 1

signif. codes: O
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SES
SES + Intelligence
sum of 5g F Pxr(>F)

74.861 2.7583 0.0874

Vessr 0,001 ‘H*7 001 ‘ef

0.035

r
[ ]

0.1

|

r



« SES, but not intelligence, appears to affect height

« Despite correlating with height, intelligence’s contribution
to height can be explained by SES

« BUT remember the order of our predictors were
determined by theory, not statistically

* S0 some researchers might claim the order of entry was
iIncorrect!
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* You may want to test interactions as well as main effects

* Polynomials help when a straight line predicts the data
poorly

« Evaluating graphs and simple linear models may
suggest interactions and polynomials
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Testing interactions

model3 <- 1lm(Height ~ SES*Intelligence)
« Tests
— Main effect of SES
— Main effect of Intelligence
— Interaction between SES and Intelligence

» Interactions go AFTER main effects

 Again, summary(model3), anova(modell,model3)
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* |s the trend linear?

« Start by creating a new variable where you square each data point,
modelling a quadratic (curved) line

data2SSES2 <- data2$SESA2
modeld4 <- 1lm(Height ~ SES+data2$SES2)

« Add higher polynomials until you reach one that is non-significant

* Here, the quadratic function is non-significant... indicating the trend
is linear

« This just confirms what the plots tell us

Ao Aalto University
[ |



o
= [u]
[}
‘:! | [u] u] E‘;D [u] [u] DD
=t
] o O g Oa [ ] LT B 1] ]
[u] L R i 1] o oo dIO [u] [u]
(= u} m o o @ 00 @O =}
[m ] (oI ) o0 0 O OO [u]
ﬁ — [u] u] a IO COo000 O I OO I O
il o o il ] o0 m oo omoa o o o0 [}
o o I I 0O OO OO O I 0O [ n ] [u] [u]
[u] oo O oDoOO OODdn OoIhd@ma o0 O O [ ]
[n u] o Q0 o IDD 0 I N OO ] o o0 ]
(3] ﬁ — [u] o o0 o O 0 DI O 0o O OO oo O
Ll [u] u] o o an OO O NNED OO i O2000 o O oo
Wl [m ] ] L n ] a0 ik O IEDID O [l u T ] [} w}
o000 0 [u] Oom oI D OO0 [u] I [u] L] [u]
o oo o0 o0 Qoo o0 o oo @D o ] ]
ﬂ — [ x mRu] a [ 11} oo m o o O
[mnln na] om0 o odoa Lalin} [u]
[ n ) (=R ] =} oo o000 I
[mu] [mlm} u] I o O [u]
= [u] o0 a [u] u]
L"‘»i —] a0 ] ]
[u] L]
[u] [u] [u]
[u] [u]
L
‘o
[u]
| | | | | |
105 110 115 120 125 130 135
Height

o Aalto University
[ |



Planned comparisons between a subset of categories in categorical
variables which have > 3 levels for ANOVA or linear models

* You can define k-1 contrasts (where k is the number of levels in your
category)
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 E.g., back to our Education groups from last week (comprehensive school,
secondary, higher)

* Formulate your hypothesis:
What could meaningful group comparisons include?

— Example 1: compare higher education to other levels of education

— Example 2: compare secondary education to comprehensive school
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Logic behind contrasts

Category Contrast 1 Contrast 2
Comprehensive -0.5 -1
school

Secondary -0.5 1
Higher 1 0

« Contrast 1: compare higher education to other levels of education
« Contrast 2: compare secondary education to comprehensive school

* Note that contrasts 1 and 2 are orthogonal, so they can be added to the same
analysis.
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Setting up contrasts: Example

Check the levels of a categorical variable:

> levels(education)

"1t "2t "3

Save and check contrasts for the categorical variable

> contrasts(education) <- cbind(c(-0.5,-0.5,1),c(-1,1,0),)

> contrasts(education)

Once a contrast is saved, it will be added to anova automatically
> anova.model <- aov(digitsymbol 1 ~ education)

> summary.lm(anova.model)
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Data for today

Variable

Type

Description

Performance
Hours
Educ

Rating
Entry

Extra
Stress

Aalto University
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continuous

continuous

categorical

continuous

continuous

continuous

continuous

Exam mark
Hours of class missed

Years of education prior to
course

Student rating of the course

Score on exam taken in the
first week of the course

Additional work
Self-reported stress level
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