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Outline for today

• Introduction to the basic concepts

• Demos and exercises

– Correlations

– Regression models

– Contrasts



What we know so far

1. Preparing your data

• Factors as factors

• Missing values coded as NAs

2. Describing your data

• Plotting

• Descriptive statistics

3. Statistical comparisons

• T-tests

• Between-subjects ANOVA



What we know after today

1. Preparing your data

2. Describing your data

3. Statistical comparisons

4. Correlations

• Correlations

• Regression



0. One step back... 
Testing for hypotheses

1) State the hypotheses (null and alternative)

example:
H0: there are no differences between groups
H1: there is a difference between groups



0. One step back... 
Testing for hypotheses

1) State the hypotheses (null and alternative)

2) Formulate an analysis plan (how to use sample data to evaluate the null 
hypothesis)

significance level: 0.05 is acceptable
test method: two-sample t test



0. One step back... 
Testing for hypotheses

1) State the hypotheses (null and alternative)

2) Formulate an analysis plan (how to use sample data to evaluate the null 
hypothesis)

3) Analyze sample data (find the value of the test statistic described in the 
analysis plan)

calculate standard error, degrees of freedom
use these to calculate test statistic (t-score)
assess the p value (=probability of observing a sample statistic as 
extreme as the test statistic)



T test
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0. One step back... 
Testing for hypotheses

1) State the hypotheses (null and alternative)

2) Formulate an analysis plan (how to use sample data to evaluate the null 
hypothesis)

3) Analyze sample data (find the value of the test statistic described in the 
analysis plan

4) Interpret results (apply the decision rule described in the analysis plan – if 
the value of the test statistic is unlikely, based on the null hypothesis, reject 
the null hypothesis)

compare p value to the significance level, reject null hypothesis when 
p value is less than significance level



Probability to observe this p value 



0. One step back... 
Testing for hypotheses

1) State the hypotheses (null and alternative)
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3) Analyze sample data (find the value of the test statistic described in the 
analysis plan

4) Interpret results (apply the decision rule described in the analysis plan – if 
the value of the test statistic is unlikely, based on the null hypothesis, reject 
the null hypothesis)

compare p value to the significance level, reject null hypothesis when 
p value is less than significance level



Data for the lecture

• If you want to play around with it, you can find the data here:

– http://becs.aalto.fi/~heikkih3/ses  

– Use read.table  and set header=TRUE:
data <- read.table(‘http://becs.aalto.fi/ ~heikkih3/ses’,

header=T)

• Data has been simulated

http://becs.aalto.fi/
http://becs.aalto.fi/


1. Getting started

• Load in data

• Prepare the data as usual

– Missing values, factors as factors

• Describe the data

– summary, describe, plots

• What’s new: learn some new ways to look at the data

– scatterplots, corr.test, coplot, xyplot



summary(data)

• Data has some obvious outliers

• Sex is not coded as a factor

• NA already coded in the data



describe(data)

library(psych)

describe(data)



Examine trends visually and statistically

plot(data)

• What does our data look like? - scatterplot between all variables

corr.test(data)

• Simple correlation matrix is often an easy way to start identifying trends

• We learn more about correlations in a bit…



plot(data)

Looks like we 
have some 
serious outliers…



corr.test(data)

• Correlation matrix

• Sample size

• p values



plot and corr.test

• The data is being heavily influenced by at least one outlier

• Height and intelligence are VERY strongly associated

• Sex still needs to be recoded



Preparing the data

data$sex <- factor(data$sex, levels=c(0,1), labels=c(”male”, 
”female”)

which(Height > 200)

which(intelligence > 200)

which(is.na(data$sex))

• The problem is being caused by case 38

data2 <- data[-38,]



Examine data2

• detach(data)

• attach(data2)

• plot(data2)

• corr.test(data2)

• Evaluate impact of dropping the case visually

• You can if you wish rerun all analyses on data and data2, for comparison



plot(data2)

No more extreme 
outliers distorting 
our data



corr.test comparison

• data

Intelligence Height SES
Intelligence 1.00 0.72 0.22
Height 0.72 1.00 0.21
SES 0.22 0.21 1.00

• data2

Intelligence Height SES
Intelligence 1.00 0.09 0.16
Height 0.09 1.00 0.13
SES 0.16 0.13 1.00



Conditioning
plots

coplot(Intelligence 
~ Height | sex,
xlim=c(105,135)
ylim=c(80,120))



Or …

library(lattice)

xyplot(Intelligence ~ 
Height | sex)



2. Correlation

• Covariance and correlations

• Different correlation coefficients:

– Pearson

– Spearman

– Partial

 



Visualization: scatterplots

plot(data)

plot(SES ~ Height)



Pearson product-moment correlation 
coefficient

• Covariance and correlation between two variables

cov(SES, Intelligence)

cor(SES, Intelligence)

cor.test(SES, Intelligence)

– Tests for null hypothesis that correlation = 0

• For the whole data frame

corr.test(data2)

• Gives Pearson’s correlation coefficient by default



Pearson product-moment correlation 
coefficient

• Gives

– Correlation coefficient

– Absolute value, positive vs negative correlation

– T test statistics and p value

• Pairwise deletion of cases is default

– If want to select just complete cases, use ”complete”

• Adjust for multiple tests

– Modify tests by changing ”adjust”



Pearson product-moment correlation 
coefficient

• p values: 
raw values below diagonal,
values above diagonal are 
adjusted for multiple tests



Spearman’s rank correlation coefficient

• Similar, but now add ”method” as a named argument:

cor.test(SES, Intelligence, method=”spearman”)

corr.test(data2, method=”spearman”)

• Same details:

– Correlation coefficient

– Result of t test



Partial correlations

• pcor.test(x,y,z,) from ppcor package

pcor.test(SES, Intelligence, Height)

– Partial correlation between SES and Intelligence while controlling for 
Height

• Results:

– Coefficient, p value, t value



3. Regression models

• Concepts

• How to build up your model

• Simple model with one predictor

– Testing for assumptions

• Another model with two predictors

– Model comparison

• Modeling interactions and polynomials



Linear regression

• ANOVA is just a special case of a linear model

– Where predictor is categorical

• In fact, the information stored by R in both cases is similar – just the standard 
output differs:

– ANOVA:
summary(anova.model) # ANOVA table
summary.lm(anova.model) # regression table

– Regression:
summary(reg.model) # regression table
anova(reg.model) # ANOVA table



Linear regression

• We can predict any data using the following general equation:

• Describing a straight line:

• Regression coefficient for the predictor, slope of the regression line

• Intercept (value of Y when X = 0) 

•  



Linear regression

Field (2009)



Linear regression

• Idea:

– Fit a regression line to the data

– The regression line summarizes or models your observations

– Predicts a value on the outcome variable (Y_pred) for each value of a 
single observed variable, X

• How?

– Method of least squares – provides the regression line in which 
the sum of squared differences between the observed values 
and the values predicted by the model is as small as possible

•  



Sums of squares

• Total sums of squares (SS_total)

– Sum of squared differences between observed values of Y and 
the mean of Y

•  
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the mean of Y

• Residual sums of squares (SS_residual)

– Sum of squared differences between observed values of Y and 
predicted values of Y

•  





Sums of squares

• Total sums of squares (SS_total)

– Sum of squared differences between observed values of Y and the mean 
of Y

• Residual sums of squares (SS_residual)

– Sum of squared differences between observed values of Y and predicted 
values of Y

• Model sums of squares (SS_model)

– Sum of squared differences between predicted values of Y and the mean 
of Y

•  





Sums of squares

• Total sums of squares (SS_total)

– Sum of squared differences between observed values of Y and the mean of Y

• Residual sums of squares (SS_residual)

– Sum of squared differences between observed values of Y and predicted values of 
Y

• Model sums of squares (SS_model)

– Sum of squared differences between predicted values of Y and the mean of Y

– = SS_total – SS_residual

•  



Linear regression

• Testing the model: R^2

– The proportion of variance accounted for by the regression 
model

– Indicates how much the model improves the prediction of Y over 
just using the mean of Y

• (in ANOVA: how much does adding a separate group 
mean improve the prediction of Y over just using the 
same mean for all groups)

•  



Regression models

• R uses function lm

y ~ A # A is continuous
y ~ as.factor(A) # A is categorical
y ~ A + B # models A and B main effects
y ~ A + B + A:B # models A, B, and their interaction
y ~ A*B # shortcut for: y ~ A + B + A:B

• Create variables for polynomial regression
A_2 = a^2
A_3 = a^3

• Save results of lm():
model1 <- lm()



Relationship with ANOVA

• Looks familiar?

• This is because ANOVA is part of the same family: it is just a special case 
of general linear model

– Where predictor is categorical variable



Simple model

model1 <- lm(Height ~ SES)

• SES is our only predictor

• Data about the model stored in model1

summary(model1)

anova(model1)

coefficients(model1)

confint(model1, level=0.95)

plot(model1)

fitted(model1)
resid(model1)



summary(model1)



summary(model1)

• Gives data on coefficients

– beta_0 = intercept

– beta_1 = gradient

– As in…

y = beta_0 + beta_1 * x

• R^2 and adjusted R^2

• Significance of predictors

• F-ratio



anova(model1)

• Sums of squares

• DF

• anova is very useful when you want to COMPARE models



plot(model1)

layout(matrix(c(1,2,3,4),2,2))

plot(model1)



Plotting the regression line

plot(Height~SES)

abline(model1, 
col=”red”, lwd=2)



Testing the assumptions

• Influential cases

• Multicollinearity

• Homoscedasticity

• Linearity

• Parsimonity!

– More complex models are penalized in adjusted R^2



Influential cases

• Cook’s distances

influence.measures(model1)

– Tests which cases have a large impact on the model

– Can also be identified graphically

– Cases above 0.5 or 1 may be problematic, though some suggest 
sample size must be taken into account

– Note case 38 in ”data”



data vs data2



Multicollinearity

• Independent variables should not be highly intercorrelated

• Can be dealt with by averaging the variables, or by factor analysis

• You can use the correlation matrix to examine this.



Homoscedasticity

• Variance should be homogenous

library(car)

ncvTest(model1)

• Results should be non-significant

• Significant results indicate regression model may be biased

– In this case, transformation of data may help

• Residuals vs. fitted plots are also useful



Homoscedasticity



Linearity

• Can be identified from histograms

• Or take QQ-plot separately

• If the data points are distributed equally around the horizontal line, data is 
likely linear

• If violated, non-linear transformation may help



Model interpretation



Model interpretation

• SES predicts height significantly

• Look at R^2 for effect size

• What about adding another predictor?



Model 2

model2 <- lm(Height ~ SES+Intelligence)

• Here, SES is entered into the model first, followed by Intelligence

• We can test the effect of intelligence after accounting for SES

• We can test whether including intelligence makes for a better overall model



summary(model2)



Model 2 interpretation

• Intelligence is not a significant predictor of height

• Does it improve our model?

• Use anova(model1,model2) and see if the extra predictor significanlty 
improves the model



anova(model1,model2)



Final model

• SES, but not intelligence, appears to affect height

• Despite correlating with height, intelligence’s contribution 
to height can be explained by SES

• BUT remember the order of our predictors were 
determined by theory, not statistically

• So some researchers might claim the order of entry was 
incorrect!



Interactions and polynomials

• You may want to test interactions as well as main effects

• Polynomials help when a straight line predicts the data 
poorly

• Evaluating graphs and simple linear models may 
suggest interactions and polynomials



Testing interactions

model3 <- lm(Height ~ SES*Intelligence)

• Tests

– Main effect of SES

– Main effect of Intelligence

– Interaction between SES and Intelligence

• Interactions go AFTER main effects

• Again, summary(model3), anova(model1,model3)



Polynomials

• Is the trend linear?

• Start by creating a new variable where you square each data point, 
modelling a quadratic (curved) line

data2$SES2 <- data2$SES^2

model4 <- lm(Height ~ SES+data2$SES2)

• Add higher polynomials until you reach one that is non-significant

• Here, the quadratic function is non-significant… indicating the trend 
is linear

• This just confirms what the plots tell us



Polynomials



4. Contrasts

• Planned comparisons between a subset of categories in categorical 
variables which have > 3 levels for ANOVA or linear models

• You can define k-1 contrasts (where k is the number of levels in your 
category)



4. Contrasts

• E.g., back to our Education groups from last week (comprehensive school, 
secondary, higher)

• Formulate your hypothesis:
What could meaningful group comparisons include?

– Example 1: compare higher education to other levels of education

– Example 2: compare secondary education to comprehensive school



Logic behind contrasts

● Contrast 1: compare higher education to other levels of education

● Contrast 2: compare secondary education to comprehensive school

● Note that contrasts 1 and 2 are orthogonal, so they can be added to the same 
analysis.

Category Contrast 1 Contrast 2

Comprehensive 
school

-0.5 -1

Secondary -0.5 1

Higher 1 0



Setting up contrasts: Example

Check the levels of a categorical variable:

> levels(education)

"1"  "2"  "3"

Save and check contrasts for the categorical variable

> contrasts(education) <- cbind(c(-0.5,-0.5,1),c(-1,1,0),)

> contrasts(education)

Once a contrast is saved, it will be added to anova automatically

> anova.model <- aov(digitsymbol_1 ~ education)

> summary.lm(anova.model)



Data for today

Variable Type Description

Performance continuous Exam mark

Hours continuous Hours of class missed

Educ categorical Years of education prior to 
course

Rating continuous Student rating of the course

Entry continuous Score on exam taken in the 
first week of the course

Extra continuous Additional work

Stress continuous Self-reported stress level


	Slide 1
	Outline for today
	What we know so far
	What we know after today
	1. Getting started
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Data for the lecture
	Slide 16
	summary(data)
	describe(data)
	Examine trends visually and statistically
	plot(data)
	corr.test(data)
	plot and corr.test
	Preparing the data
	Examine data2
	plot(data2)
	corr.test comparison
	Conditioning plots
	Or …
	2. Correlation
	Visualization: scatterplots
	Pearson product-moment correlation coefficient
	Pearson product-moment correlation coefficient
	Pearson
	Spearman’s rank correlation coefficient
	Partial correlations
	3. Regression models
	Linear regression
	Linear regression
	Linear regression
	Linear regression
	Sums of squares
	Slide 42
	Sums of squares
	Slide 44
	Sums of squares
	Slide 46
	Sums of squares
	Linear regression
	Regression models
	Relationship with ANOVA
	Simple model
	summary(model1)
	summary(model1)
	anova(model1)
	plot(model1)
	Plotting the regression line
	Testing assumptions
	Influential cases
	data vs data2
	Multicollinearity
	Homoscedasticity
	Slide 62
	Linearity
	Model interpretation
	Model interpretation
	Model 2
	summary(model2)
	Model 2 interpretation
	anova(model1,model2)
	Final model
	Interactions and polynomials
	Testing interactions
	Polynomials
	Polynomials
	4. Contrasts
	4. Contrasts
	Logic behind contrasts
	Setting up contrasts: Example
	Data for today

