

Experimental and statistical methods II

22.01.2014 heini.heikkila@aalto.fi

Outline

- Recap: stats from the previous course
- New: repeated measures

Our tools

- Descriptive statistics
- Plots
- Group comparisons
 - t tests
 - ANOVA
- Trends in the data
 - correlation
 - regression
- NEW: repeated measures design

Example data

Blindspots vs. Spotlights experiment

Visual search in a real-life scene

Eye-tracking

- RT to find the object

Two conditions:

- spotlight
- blindspot

N = 28

http://www.nuthmann.de/antje/Site/scotoma.html

Example data

Blindspots vs. Spotlights experiment

2x3 design:

- type of image degradation (blindspots vs. spotlights)
- window size (small, medium, large)
- → two factors

Outcome variable:

- reaction time (amount of time to find a target object in the scene)
- → continuous variable

Preparing the data

For repeated-measures ANOVA (more soon..) in R, we need to have the data in **long** format. [Use 'reshape' if necessary.]

```
> head(data,10)
   subject degradation_type window_size
                                               RT
                 blindspots
                                   small 2647.148
1
         1
2
                 blindspots
                                 medium 2647.878
                 blindspots
         1
                                     big 2604.351
                 spotlights
4
         1
                                   small 4902.754
5
                 spotlights
                                  medium 4406.960
                 spotlights
6
         1
                                     big 2956.953
                 blindspots
                                   small 4478.689
8
                 blindspots
                                  medium 2342,486
                 blindspots
                                     big 3554.507
         2
                 spotlights
                                   small 6098.540
10
```


Long format

One row for each condition, multiple rows per subject

```
> head(data,10)
   subject degradation_type window_size
                                               RT
                 blindspots
                                   small 2647.148
1
         1
2
                 blindspots
                                  medium 2647.878
                 blindspots
3
         1
                                     big 2604.351
                 spotlights
4
         1
                                   small 4902.754
5
                 spotlights
                                  medium 4406.960
                 spotlights
                                     big 2956.953
6
         1
                 blindspots
                                   small 4478.689
                 blindspots
8
                                  medium 2342.486
                 blindspots
9
                                     big 3554.507
         2
                 spotlights
                                   small 6098.540
10
```


Wide format

One row per each subject, columns for different conditions

> head(data.wide)

	subject	RT.small.blindspots	RT.medium.blindspots	RT.big.blindspots	RT.small.spotlights	RT.medium.spotlights	RT.big.spotlights
1	1	2647.148	2647.878	2604.351	4902.754	4406.960	2956.953
7	2	4478.689	2342.486	3554.507	6098.540	3915.673	3583.427
13	3	2451.279	3286.329	2073.243	6149.233	3008.687	3430.727
19	4	3280.187	3003.340	3745.962	4585.790	5366.018	3931.450
25	5	1936.893	2628.053	3396.849	5697.515	3328.986	2790.949
31	6	3233.802	2049.298	2455.984	5529.814	2905.291	1856.470

Descriptive statistics

> summary(data)

Г	subjec	:t	degradation_type	windo	w_size	F	₹T
1	:	6	blindspots:84	big	:56	Min.	: 937.2
2	:	6	spotlights:84	mediu	m:56	1st Qu.	:2405.3
3	:	6		small	:56	Median	:3023.0
4	:	6				Mean	:3237.0
5	:	6				3rd Qu.	:3903.5
6	:	6				Max.	:6602.3
(0	ther):1	.32					

factors

continuous variable

> describe(data)

	var	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
subject*	1	168	14.50	8.10	14.50	14.50	10.38	1.00	28.0	27.00	0.0	-1.22	0.63
degradation_type*	2	168	1.50	0.50	1.50	1.50	0.74	1.00	2.0	1.00	0.0	-2.01	0.04
window_size*	3	168	2.00	0.82	2.00	2.00	1.48	1.00	3.0	2.00	0.0	-1.52	0.06
RT	4	168	3237.02	1175.11	3023.02	3139.81	1048.46	937.15	6602.3	5665.15	0.7	0.06	90.66

Plots

- examining your data

- high-quality graphs for reports and publications

Histogram of reaction time

Plots

- examining your data
- high-quality graphs for reports and publications

Tables

- examining your data
- high-quality tables for reports and publications

		Window size			
		big	medium	small	
Degradation type	blindspots	2641.2	2494.4	2697.5	
	spotlights	3025.5	3340.0	5223.5	

Statistical tests

Group differences:

- · Factor with two levels (i.e., comparing 2 groups): t tests
- Factor with ≥ three levels: ANOVA

Trends in the data:

- · Two ontinuous variables: correlations
- Multiple continuous variables, factors: regression (linear models)

T tests and ANOVA: assumptions

T-tests

- · Sample size > 20
- Normality
- Continuous variables

ANOVA

- Dependent variables is continuous
- · One discrete variable defining group membership
- · Sample size > 15 per group
- Normality
- Equality of variances
 - → If these are violated, use nonparametric tests or transformations!

Repeated measures design

e.g.

- longitudinal data
- experiments with multiple conditions
 - in example data: spotlights and blindspots

Why repeated measures design?

subject	storeA	storeB	storeC	storeD
lettuce	1.17	1.78	1.29	1.29
potatoes	1.77	1.98	1.99	1.99
milk	1.49	1.69	1.79	1.59
eggs	0.65	0.99	0.69	1.09
bread	1.58	1.7	1.89	1.89
cereal	3.13	3.15	2.99	3.09
ground.beef	2.09	1.88	2.09	2.49
tomato.soup	0.62	0.65	0.65	0.69
laundry.detergent	5.89	5.99	5.99	6.99
aspirin	4.46	4.84	4.99	5.15

Why repeated measures design?

subject	storeA	storeB	storeC	storeD
lettuce	1.17	1.78	1.29	1.29
potatoes	1.77	1.98	1.99	1.99
milk	1.49	1.69	1.79	1.59
eggs	0.65	0.99	0.69	1.09
bread	1.58	1.7	1.89	1.89
cereal	3.13	3.15	2.99	3.09
ground.beef	2.09	1.88	2.09	2.49
tomato.soup	0.62	0.65	0.65	0.69
laundry.detergent	5.89	5.99	5.99	6.99
aspirin	4.46	4.84	4.99	5.15

Repeated measures t test

Are there differences in reaction times between degradation types?

> head(data,10)

```
subject degradation_type window_size
                                                RT
                                   small 2647,148
                 blindspots
1
         1
                 blindspots
                                  medium 2647.878
3
                 blindspots
         1
                                     big 2604.351
                 spotlights
                                   small 4902.754
4
         1
                 spotlights
5
                                  medium 4406.960
         1
                 spotlights
                                     big 2956.953
6
         1
                 blindspots
7
                                   small 4478.689
                 blindspots
                                  medium 2342.486
8
         2
                 blindspots
9
                                     big 3554.507
         2
                 spotlights
                                   small 6098.540
10
```


Repeated measures t test

```
> t.test(RT~degradation_type, paired=T)

Paired t-test

data: RT by degradation_type

t = -9.3553, df = 83, p-value = 1.271e-14

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:
    -1518.1290   -985.7879

sample estimates:
mean of the differences
    -1251.958
```

Oops! → degrees of freedom vs N=28??

Solution: reshape to wide or use ANOVA

Repeated measures ANOVA

Assumptions:

- balanced design
- · random assignment to groups
- · individual differences are error

Hypothesis:

- Are there any differences between related population means?
- Null hypothesis: means are equal.

Repeated measures: longitudinal design

Levels (sometimes called related groups) of the Independent Variable 'Time'

© Lund Research Ltd 2011

http://statistics.laerd.com

Repeated measures: multiple conditions

© Lund Research Ltd 2011

http://statistics.laerd.com

The already familiar between-subjects ANOVA

Our newer friend within-subjects ANOVA

Why repeated measures design?

subject	storeA	storeB	storeC	storeD
lettuce	1.17	1.78	1.29	1.29
potatoes	1.77	1.98	1.99	1.99
milk	1.49	1.69	1.79	1.59
eggs	0.65	0.99	0.69	1.09
bread	1.58	1.7	1.89	1.89
cereal	3.13	3.15	2.99	3.09
ground.beef	2.09	1.88	2.09	2.49
tomato.soup	0.62	0.65	0.65	0.69
laundry.detergent	5.89	5.99	5.99	6.99
aspirin	4.46	4.84	4.99	5.15

One-way within-subjects ANOVA

- When testing for the effect of one factor.
- Are there differences in reaction times between degradation types?
 - Expect the subjects to vary in the effect of degradation type.
- Logic: in ANOVA, add an error term that reflects that we have 'degradation types nested within subjects'

 $> A1 \leftarrow aov(RT \sim degradation_type + Error(subject/degradation_type))$

Compare to the one-way ANOVA:

 $> A0 \leftarrow aov(RT \sim degradation_type)$

One-way within-subjects ANOVA

```
> A1 <- aov(RT~degradation_type + Error(subject/degradation_type))</pre>
> summary(A1)
Error: subject
             Sum Sq Mean Sq F value Pr(>F)
Residuals 27 39964303 1480159
Error: subject:degradation_type
                   Sum Sq Mean Sq F value Pr(>F)
Residuals
                  5371007
                           198926
             0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Signif. codes:
Error: Within
               Sum Sq Mean Sq F value Pr(>F)
                                                degrees of freedom
                                                looks better now!
Residuals 112 119442844 1066454
```


One-way within-subjects ANOVA

Two-way within-subjects ANOVA

- When testing for the effect of two or more factors.
- Are there differences in reaction times if we vary degradation type?
 Are there differences in reaction times if we vary window size?
 Are there differences in reaction times caused by an interaction effect of degradation type and window size?
 - Expect the subjects to vary in the degradation type effect, in the window size effect, and in the interaction effect.

```
> A2 ← aov(RT ~ degradation_type*window_size +
Error(subject/degradation_type*window_size)
```


Two-way within-subjects ANOVA

main effect of degradation type

```
Error: subject:degradation_type

Df Sum Sq Mean Sq F value Pr(>F)

degradation_type 1 65830798 65830798 330.9 <2e-16 ***

Residuals 27 5371007 198926

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

main effect of window size

```
Error: subject:window_size

Df Sum Sq Mean Sq F value Pr(>F)
window_size 2 44164320 22082160 65.45 3.69e-15 ***
Residuals 54 18219221 337393
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

interaction effect

```
Error: subject:degradation_type:window_size

Df Sum Sq Mean Sq F value Pr(>F)

degradation_type:window_size 2 35575390 17787695 44.71 3.52e-12 ***

Residuals 54 21483912 397850

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Two-way within-subjects ANOVA

```
> model.tables(A2, 'means')
Tables of means
Grand mean
3237.023
 degradation_type
degradation_type
blindspots spotlights
      2611
                 3863
 window_size
window_size
   big medium small
  2833 2917
               3961
 degradation type:window size
                window size
degradation type big medium small
      blindspots 2641 2494
                             2698
      spotlights 3026 3340
                             5223
```


Where are the differences?

If ANOVA gives you significant results, you might want to look where the differences are.

- post-hoc comparisons
- or planned comparisons (contrasts)

A simple way: run all possible pairwise comparisons with t tests (remember to correct for multiple comparisons!)

http://xkcd.com/882/

	big	medium	small
blindspots	2641.2	2494.4	2697.5
spotlights	3025.5	3340.0	5223.5

Need to use a nonparametric test?

repeated measures t test:Wilcoxon Signed-Rank Test> ?wilcox.test

repeated measures ANOVA:Friedman Rank Sum Test>?friedman.test

More?

Repeated measures ANOVA:

Laerd Statistics Guide

William B. King's tutorial

Help with R/SPSS/Matlab:

- Online resources
- · Ask us :)

.

Next demo sessions deal with common pitfalls in analysis and reporting based on our observations on the written reports – don't hesitate to email us with your concerns or questions!

